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AMO wavefunctions for LiH, Li2, HF, F 2 are presented. 
An explicit formula for computing the energy of a closed shell system composed by doubly occupied 

MO's and singly filled AMO's is given. 

The AMO-method  provides a simple tool to construct partially correlated 
wavefunctions for molecules and crystals [1-2] .  It is a version of the Different 
Orbitals for different spin method particularly suited for molecular systems and 
can be considered as a particular case of the general EHF scheme. Because of the 
relatively small amount  of computat ions involved it is convenient for studying 
large size molecules and there is no doubt that its most useful applications are 
concerned with systems too large to be treated with more accurate procedures. 

Nevertheless the AMO technique found interesting applications also in the 
field of small molecular systems [3-71. In this case an essential advantage of the 
AMO w.f. over the one-determinant approximation is a correct asymptotic 
behaviour for large internuclear distances. Thanks to this property AMO is one 
of the simplest theoretical tools to compute potential energy curves or surfaces. 
Moreover  ab initio AMO calculations on small systems are useful tests of the 
accuracy of the method. An exaustive discussion on this point would involve the 
optimization of the molecular orbitals to be paired to build the AMO w.f. and lies 
outside the aim of the present work. In this paper we simply derive AMO w.f. 
using SCF orbitals for the following 1st row diatomics: LiH, Li2, HF, F 2. In all 
cases the splitting of doubly occupied MO's  was restricted to valence shell orbitals. 
This involved a straightforward extension of the energy formulae given in Ref. [23 
as detailed in the next section. 

Construction of the A M O  Wave Function 

The AMO wavefunctions, we consider here, are of the form: 

= Ads,M[  .... (1) 
where A is the antisymmetrizer, 0s, u a spin projection operator and ~p ..... ~P.al 
are Slater determinants representing respectively a core of 2n electrons in n doubly 
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occupied orbit_als and a valence shell of 2m electrons in 2m singly occupied alter- 
nant molecular orbitals. Both lp .... and ~Pwl are built from a set of orthonormal 
orbitals 4 = {cp~},here taken to be the SCF orbitals. As far as ~Vva 1 is concerned, an 
occupied MO tpi is paired to a virtual orbital (p~ to give a couple of alternant 
molecular orbitals ui, vi according to  the following equation [8] 

ui = cos01q~i + sin0i(p~; vi = cos0~(pi - sin0i~o r. (2) 

The energy corresponding to function (1) is given by: 

g(~/)) = g(~/) . . . .  ) -1- g(Ipval) "q- gint (3) 

where E(~p .. . .  ), E(V;va ~ are the usual expressions for the energy of a closed shell MO 
and AMO wave functions respectively, and: 

n + m  

E~nt= ~ ~ {nj[2(ii/jj)-(ij/ij)]+nj[2(ii/j-])-(i]/i]] } . (4) 
i=l  j=n+ l  

In Eq. (4) nj and ny are the fractional occupation numbers of orbitals ~oj and ~Oy a s  
defined in Ref. [2]. Egs. (3) and (4) are easily obtained by the following considera- 
tions: i) the operator Os, M for 2n + 2m electrons appearing in Eq. (1) can be replaced 
by an O),M for 2m electrons acting on ~Pva~ only. This property is easily proved if 
one remembers that the spin projection can be obtained by a suitable averaging of 
rotations in spin space [9] and ~p .... is obviously invariant under such operation; 
ii) ~p .... and tpv,~ are strongly orthogonal because of the orthogonality of the basis 
4, and then the formulae given by McWeeny [10] for strongly orthogonal group 
functions can be used; iii) the density matrices of ~p .... and ~p~,~ are both diagonal 
in the basis 4. 

The last stage of the computation involves optimization of the variational 
parameters ,~ = cos 20~. 

Numerical Applications 

SCF molecular orbitals were expressed as a linear combination of contracted 
gaussians centered on each atom, according to Table 1. 

Orbital exponents and contraction coefficients were chosen according to 
Veiltard [11]. A SCF procedure was performed and the resulting molecular 
orbitals used to build the AMO function. 

The process was repeated for a number of internuclear distances for each 
molecule. Energies and symmetries of occupied and virtual canonical orbitals of 
interest are reported in Table 2. Several pairing schemes between molecular 
orbitals were tried; they follow the criterion of mixing orbitals having not too 

different energies, under the constraint that the correct spatial symmetry of the 
molecular wavefunction is preserved. 

Energies and optimum values of variational parameters for various AMO 
functions are reported in Table 3. It is well known that AMO wavefunctions are 
equivalent to a limited C.L where the mixing coefficients of configurations are 
functions of the non linear variational parameters 2 i [2]. A large number of CI-type 
wavefunctions have been reported in the literature for the molecules here investi- 
gated; for some of them see Ref. [13-20].  
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Table  1. A tomic  bas is  set 

A t o m  N u m b e r  of N u m b e r  of 
uncon t r ac t ed  G T O ' s  con t rac ted  G T O ' s  

s p s p 

H 6 0 2 0 
Li 11 0 5 0 
F 11 7 5 3 
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Table  2. Orb i t a l  symmetr ies  for canon ica l  M O  SCF 

Molecule  and  LiH(IZ +) 3.02 Li2(12;~) 5.25 HF(1Z +) 1.7328 Fz(1Z~)2.680 
state, int. 
d is tance  (a.u.) Symmet ry  Energy  Symmet ry  Energy  Symmet ry  Energy  Symmet ry  Energy  

l a  - 2 . 4 7 2 6  1% 
2 a  --0.2990 l a ,  
3or 0.0109 2ag 
4 a  0.0779 2au 
5a  0.3638 3 a  o 

3a .  

- 2 . 4 7 4 4  l a  - 2 6 . 2 9 6 3  l ag  - 2 6 . 4 3 6 4  
- 2 . 4 7 4 2  2 a  - 1.6002 l a .  - 2 6 . 4 3 6 2  
- 0 . 1 8 4 5  3a  - 0.7618 2 a  o - 1.7745 

0.0021 1~ - 0.6538 2a .  - 1.5020 
0.0479 4 a  0.0899 1~. - 0.8175 
0.0844 5 a  0.2714 3a  o - 0.7463 

2~ 0.2769 1~ o - 0.6789 
6~ 0A711 3a ,  0.0640 
7a  0.9954 4ag 0.5048 
8a  1.6192 4 a .  0.6207 

2n .  0.6370 

2~ o 0.7830 

Table  3. To ta l  energies and  o p t i m u m  values  of va r i a t iona l  pa r ame te r s  21 (all quant i t ies  in a tomic  units)  

Molecule  Int. SCF A M O  2 a - - 3 a  A M O  2 a ~ 4 a  

and  state d is tance  Energy  Energy  2 Energy  2 

L iH  2.52 - -  7.9548 - -  7.9553 0.949 - -  7.9551 0.960 
3.02 - -  7.9706 - -  7.9712 0.937 - -  7.9710 0.952 
3.52 - -  7.9672 - -  7.9682 0.920 - -  7.9678 0.948 

A M O 2 a 0 - - 2 a  . A M O 2 a g - - 3 a g  

Li2 4.50 - -  14.8543 - -  14.8573 0.808 - -14 .8545 0.894 
5.25 - -  14.8614 - -  14.8656 0.753 - -14 .8616  0.978 
6.00 - -  14.8597 - -  14.8660 0.678 - -14 .8600  0.976 

A M O 3 a - - 4 a  

H F  1.3328 - -  99.9205 - -  99.9205 1.000 
1.7328 - -100 .0079  --100.0081 0.975 
2.1328 - -  99.9720 - -  99.9736 0.965 

A M O 3 a o - - 3 a  u 

F 2 2.267702 - -198.6845 - -198 .7020 0.818 
2.679718 - -198 .7256  - -198 .7814  0.600 
3.023600 - -198 .6964  - -198.7895 0.471 
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Results 

a) Li 2 and F 2 

In both cases the most effective pairing scheme is the ( 2 % -  200.) which leads 
to a Coulson-Fiseher type wave function. This splitting insures the correct limiting 
behaviour as the internuclear distance R approaches infinity and introduces a 
fraction of "left-right" correlation in the bond. For  Li 2 the improvements AE in 
energy from SCF range from 0.003-0.006 a.u., which is about  one half of the 
improvement  obtained by the O D C  technique [14]. Rai and Calais [4], obtained 
for this molecule an A M O  wavefunction built from orthogonalized symmetry 
orbitals expressed as a linear combination of STO's of s symmetry. The improve- 
ment of the A M O  energy with respect to the single determinant energy, reported by 
these authors is 0.017 a.u. at 6 a.u. The difference between Rai-Calais' and our 
results is related to the fact that they did not use SCF orbitals. In fact, by expanding 
each of the STO's of Rai-Calais in 4 GTO ' s  according to the criterion of MeWeeny 
and Huzinaga [21], we obtained the following values at R = 6 a.u.: -14.8504 a.u. 
for the 100 2 100 2 2o -2 M O  wavefunction; and -14.8625 for the AMO (2%-200.) 
wavefunctions; i.e., a lowering of 0.0121 a.u. A comparison with the more refined 
calculations by Shukla [7] gives the same results. Similar conclusions were 
reached previously, on the basis of semiempirical calculations on conjugated 
systems [2]. 

The pairing scheme 200 0 -300 0 was also tried for Li2, as it is suggested by CI 
treatments [13, 16]. In this case very little improvement  is obtained on the SCF 
function; our excited 300 0 orbital cannot account for an effective in-out correlation 
in the bond. Other important  mixing of orbitals would require the inclusion of rc 
orbitals in the basis in order to allow for angular correlation. 

As far as F2 is concerned, the 3o-g- 300, A M O  wavefunction gives satisfactorily 
values of AE: they range from 0.018 to 0.093 a.u. and compare favourably with 
those obtained from much more sophisticated calculations [14]. More complicate 
pairing schemes can be used for this molecule because of the presence of rc orbitals. 
The following ones were tried: i) (3o- o - 3o-,, lrc 0 - 2re,, l r c , -  2re0) and ii) (3o- 0 - 300 u, 
17z 0 - 2re o, lzc, - 2re,). 

In both cases mixing parameters  of rc orbitals were given a common value 2, 
in order to ensure the correct total symmetry of the molecule. One can easily show 
that previous pairings lead to many determinant wavefunctions, containing con- 
figurations which have non negligible weight in some CI type wavefunctions [14] 
like e.g. the double excitations 100,- 2000, 3 % -  3o-, and lrc 0 -2re , ,  3re o -3re, .  The 
minimum was found for 2, = 1, corresponding to a non-split rc-orbitals. 

b) LiH, H F  

Results for these molecules are worse than in homonuclear  cases. The only 
reasonable pairing scheme which introduces correlation in the bond are of the type 
n00-rna; they give results comparable  with the 2a o -3o~ in homonuclear  case; 
i.e. op t imum values of 2 close to 1 and small energy improvements from SCF. 
Numerical  value of AE are in essential agreement with those found in an earlier 
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split-shell calculation by Harris  and Pohl [22] and smaller than those obtained by 
Lindner  [6]. 

An at tempt  was made to improve the function by construct ing the A M O ' s  
molecular  orbitals f rom localized rather than from canonical  MO's .  Fol lowing the'  
scheme of  Boys and Foster  [23], 2a, 3a and lrc were t ransformed in 3 equivalent 
lone pairs localized on F a toms and one bonding  orbital I with ~r-symmetry 
about  internuclear axis. Oscil latory orbitals were than obtained from 4a, 5a and 
2re. The A M O  wavefunction was then built by pairing l with the corresponding 
oscillatory orbital. At the internuclear distance of 1.7328 a.u. the op t imum 2 is 
0.980 and the energy -100 .0081 a.u. Surprisingly enough no improvement  in 
respect of  the conventional  A M O  w.f. is obtained. 

Negligible effects of this localization procedure  on the A M O  energy were 
found also in case of  H 2 0  [24]. 

The computed  values of  the energy were used to estimate the internuclear 
equilibrium distances by simple parabolic  interpolation. The A M O  values are 
always larger than SCF and experimental ones, especially in the cases of Li2 and 
F2 (0.1 A). This seems to be an indesirable consequence of  the fact that  the energy 
lowering A E of our  calculations increases with the internuclear distance, as one 
can also see from Table 3. Similar behaviours  have been observed in limited CI  
calculations [25]. 

As a general comment  the improvement  over the SCF does not  seem to be 
very significant. A M O  w.f.s comparab le  or  even better in accuracy than the present 
ones were obtained using non  SCF orbitals but  containing adjustable parameters  
[4 -7 ] .  This probably  means that the best orbitals for an A M O  w.f. are not derivable 
in a simple way from the SCF ones. Analogous  situations were observed in the 
application of the D O D S  scheme to a tomic systems, like He [26]. 
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